If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90=4.9t^2+42t
We move all terms to the left:
90-(4.9t^2+42t)=0
We get rid of parentheses
-4.9t^2-42t+90=0
a = -4.9; b = -42; c = +90;
Δ = b2-4ac
Δ = -422-4·(-4.9)·90
Δ = 3528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3528}=\sqrt{1764*2}=\sqrt{1764}*\sqrt{2}=42\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-42\sqrt{2}}{2*-4.9}=\frac{42-42\sqrt{2}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+42\sqrt{2}}{2*-4.9}=\frac{42+42\sqrt{2}}{-9.8} $
| 4x+5x-3=93 | | 20=1000-n/4 | | 00=1000-n/4 | | x2-200x-240000=0 | | 10^(2x)=320.2 | | m2+18m+56=0 | | h2=36/4 | | 55x+19=-5x41 | | -9x+4=18 | | -(e/7)+2=5 | | (100*x)(x)=1*10^-14 | | x+3=2(3x-1)+5 | | 2(6x-5)-(x+1)=132 | | 3x-53=5x+3 | | 10+(6x+4)=-6x | | 4.905t^2+3t-10=0 | | 5x+7/4x+12=5/7 | | e2-10e+9=0 | | (u-1)^2-50=0 | | 7x^2+18x+66=0 | | x-4/5-19=-4 | | 25m-10=221 | | 25(x)x=61 | | b^2-76b-1440=0 | | 0.30x+x=169 | | x-0.10x=45 | | X-4x=48 | | 33=11z | | 40=r-8 | | 1/2x^2-4x-6=0 | | k^2-13k+52=0 | | 6b/b=5/3 |